Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci
نویسندگان
چکیده
Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection.
منابع مشابه
Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae.
The N-acyl homoserine lactone (AHL)-mediated quorum-sensing system in the phytopathogen Pseudomonas syringae pv. syringae requires the AHL synthase AhlI and the regulator AhlR, and is additionally subject to regulation by AefR. The contribution of quorum sensing to the expression of a variety of traits expected to be involved in epiphytic fitness and virulence of P syringae were examined. Both ...
متن کاملOats Tolerant of Pseudomonas syringae pv. tabaci Contain Tabtoxinine-beta-Lactam-Insensitive Leaf Glutamine Synthetases.
Pseudomonas syringae pv. tabaci, a commonly recognized leaf pathogen of tobacco, can infest the rhizosphere of many plants, including oats. Normal oat plants do not survive this infestation as a consequence of the complete and irreversible inactivation of all of their glutamine synthetases by tabtoxinine-beta-lactam (TbetaL), a toxin released by pv. tabaci. We have identified a population of oa...
متن کاملSystemic Responses in Arabidopsis thaliana Infected and Challenged with Pseudomonas syringae pv syringae.
Attack of plants by necrotizing pathogens leads to acquired resistance to the same or other pathogens in tissues adjacent to or remotely located from the site of initial attack. We have used Arabidopsis thaliana inoculated with the incompatible pathogen Pseudomonas syringae pv syringae on the lower leaves to test the induction of systemic reactions. When plants were challenged with Pseudomonas ...
متن کاملMolecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants.
A cosmid clone isolated from a genomic library of Pseudomonas syringae pv. syringae 61 restored to all Tn5 mutants of this strain studied the ability to elicit the hypersensitive response (HR) in tobacco. Cosmid pHIR11 also enabled Escherichia coli TB1 to elicit an HR-like reaction when high levels of inoculum (10(9) cells per ml) were infiltrated into tobacco leaves. The cosmid, which contains...
متن کاملLaser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae Pathovars.
We demonstrate the use of laser photoacoustic detection (LPAD) as a highly sensitive method to detect in planta nitric oxide ((*)NO) production from tobacco (Nicotiana tabacum). LPAD calibration against (*)NO gas demonstrated a linear relationship over 2 orders of magnitude with a detection threshold of <20 pmol h(-1) (1 part per billion volume [ppbv]). The specificity of the photoacoustic sign...
متن کامل